Mechanical coordination between anaphase A and B drives asymmetric chromosome segregation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Chromosome segregation during anaphase occurs through two mechanistically distinct processes: anaphase A, in which chromosomes move toward spindle poles, and anaphase B, in which the anaphase spindle elongates through cortical astral microtubule pulling forces. Caenorhabditis elegans embryos have been thought to rely primarily on anaphase B, with little to no contribution from anaphase A. Here, we uncover a novel anaphase A mechanism in C. elegans embryos, driven by the kinesin-13 KLP-7 MCAK and opposed by the kinesin-12 KLP-18. We found that the extent of chromosome segregation during anaphase A is asymmetrically regulated by cell polarity cues and modulated by mechanical tension within the spindle, generated by opposing forces acting on chromosomes and spindle poles. Additionally, we found that the contribution of anaphase A to chromosome segregation increases progressively across early embryonic divisions. These findings uncover an unexpected role for anaphase A in early C. elegans development and reveal a KLP-7 MCAK -dependent mechanical coordination between anaphase A and anaphase B driven chromosome segregation.
eTOC summary
Dias Maia Henriques et al. uncover an anaphase A pathway, driven by the kinesin-13 KLP-7 and opposed by the kinesin-12 KLP-18, that contributes to chromosome segregation in early C. elegans embryos. Its activity is regulated by spindle tension, cell polarity cues, and progressively increases during early embryonic divisions.