MECP2 Mutations Rewire Human ESC Fate and Bias Cortical Lineage Commitment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Rett syndrome arises from loss-of-function mutations in the X-linked chromatin regulator MECP2, yet the earliest molecular derailments in human development remain poorly defined. Using isogenic hESC models carrying three patient-derived MECP2 mutations, we followed the transcriptome from pluripotency through neuro-ectoderm, neural stem, and neural progenitor stages and into three-month cerebral organoids. Stage dominated transcriptional variance, but mutants shared a secondary program enriched for synaptic-membrane and extracellular-matrix genes. Single-cell profiling revealed a naive-like, hyper-proliferative state marked by up-regulation of ZFP42 at ESC stage. Strikingly, EMX1, a cortical radial-glia determinant, was consistently suppressed from the earliest stage onward, and cerebral organoids subsequently generated fewer excitatory neurons in favour of inhibitory and glial lineages. These data chart a continuous developmental trajectory for MECP2-mutant human cells and nominate ZFP42 and EMX1 dysregulation as tractable entry points for dissecting Rett pathogenesis.

Article activity feed