Differential effects of postpartum sleep restriction on maternal and offspring immunity in the rat

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

sleep disturbances can trigger a wide range of physiological consequences, affecting hormonal regulation, metabolism, cognitive function, and immune responses. Human mothers worldwide frequently experience sleep restriction and fragmentation, a pattern also observed in other mammalian mothers, such as rats. These alterations may add to sleep disturbances unrelated to motherhood. Considering this, we wondered about the impact of sleep restriction in postpartum mother rats on their immunological status. Furthermore, given that early-life experiences can shape the immune system and that even subtle parental changes can influence offspring development, we hypothesized that maternal sleep loss might also exert detrimental effects on the pups. In this study, we investigated the effects of acute and chronic maternal sleep restriction during the postpartum period on immune parameters in both mother rats and their offspring by analyzing antibody titers and systemic inflammation.

Methods

mother rats were surgically implanted with electrodes for polysomnographic recordings and for sleep deprivation (deep electrodes targeting the mesopontine wake-promoting area). From postpartum day 5 to day 9, lactating dams were randomly assigned to one of three groups: chronic sleep restriction (CSR; 6 h of sleep deprivation per day for five consecutive days), acute sleep restriction (ASR; 6 h of sleep deprivation only on postpartum day 9), or control (undisturbed). On postpartum day 9, mothers were milked, and blood samples from both mothers and pups were subsequently collected. ELISA assays quantified IL-17A, IL-6, IgG, and IgG2a in maternal serum; IgG and IgG2a in milk; and IgG in pup serum. Hematological parameters, including leukocyte profiles, were also assessed in peripheral blood of dams and pups.

Results

maternal immune parameters analyzed remained unaffected by sleep restriction. IgG levels were lower in male pups from mothers subjected to ASR (5560 ± 734 µg/mL) compared with the control group (8666 ± 463 µg/mL; p = 0.025), whereas female pups showed no significant changes. Additionally, both female (4.10 ± 0.58) and male (3.81 ± 0.42) pups from dams subjected to CSR exhibited higher absolute lymphocytes counts relative to the control group (females: 2.28 ± 0.25, p = 0.004; males: 2.44 ± 0.25; p = 0.029).

Conclusions

Chronic and acute maternal sleep restriction had distinct impacts on offspring immunity, altering serum antibody and leukocyte profiles, while leaving maternal parameters unaffected. These results indicate that maternal sleep loss can influence the offspring even in the absence of detectable maternal immune alterations, with male pups being especially susceptible.

Article activity feed