A mechanical origin for implantation defects in embryos from aged females

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Women over 35 experience a marked reduction in fertility. The origin of these fertility defects appears to reside in the implantation capacity of the embryo itself, but the mechanistic basis of this impairment is not well-understood. Here, we identify a core mechanical defect in embryos from aged mothers that impairs the process of implantation. Using mouse models, we find that reproductive aging yields increased contractility in the extra-embryonic trophectoderm, the outer epithelial tissue responsible for mediating uterine attachment and embryo implantation. This hypercontractile state elevates tissue surface tension and viscosity in the blastocyst, culminating in defective spreading during implantation. Enhanced contractility is necessary and sufficient for this age-related defect in implantation, and early embryo mechanics can be used to predict successful implantation for embryos from both young and aged mothers. Our work represents a potential foundation for improving embryo selection in Assisted Reproductive Technologies to resolve age-related defects in female fertility.

Article activity feed