Sequence engineering at non-motif modulator residues yields a peptide that effectively targets a single PDZ protein in a disease-relevant cellular context

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

PDZ interaction networks are finely-tuned products of evolution. These widespread binding domains recognize short linear motifs (SLiMs), usually at the C-terminus of their interacting partners, and are involved in trafficking and signaling pathways, the formation of tight junctions, and scaffolding of the post-synaptic density of neurons, amongst other roles. Typically, a single PDZ domain binds multiple targets; conversely, each PDZ-binding protein engages several PDZ domains, dependent on cellular conditions. Historical PDZ binding motifs rely on two key positions for binding. However, previous insights on modulator, or non-motif, selectivity preferences reveal that these limited motifs are insufficient to describe PDZ-mediated interactomes, consistent with the observation that the degree of promiscuity is much more limited than predicted by defined binding classes. Here, we use these principles to engineer and test a peptide-based inhibitor capable of interacting with a single PDZ domain-containing protein in a disease relevant cellular system. We first interrogate a previously developed sequence selective for cystic fibrosis transmembrane conductance regulator (CFTR)-Associated Ligand (CAL), one of five PDZ domains known to bind the CFTR C-terminus, probing for off-target PDZ partners. Once identified, we use parallel biochemical and structural refinement to eliminate these interactions and introduce a CAL PDZ inhibitor with unprecedented PDZ domain selectivity. We test and verify specificity using relevant cellular PDZ target networks in a mass spectrometry-based approach. Our resultant selective inhibitor enhances chloride efflux when applied to polarized patient bronchial epithelial cells, as well as confirms that engineering an effectively single-PDZ peptide is possible when modulator preferences are applied.

Article activity feed