CRISPR/Cas9 screenings reveal the role of STX1A and CDK1 in Cathepsin G entering and killing colorectal cancer cells
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Neutrophils are the major populations of white blood cells and have been reported to facilitate cancer metastasis. Meanwhile, emerging evidence has recently suggested the anti-cancer role of neutrophils. Our previous study revealed that CB-839 and 5-FU-treated colorectal cancer (CRC) tumors recruited neutrophils and induced neutrophil extracellular traps (NETs). Cathepsin G (CTSG), which is released during NET formation, enters CRC cells through the receptor for advanced glycation end products (RAGE) and cleaves 14-3-3ε to promote apoptosis. However, the detailed mechanism underlying CTSG’s anti-tumor function remains less studied. In this study, we report that CTSG enters CRC cells through RAGE-mediated endocytosis. Knocking out RAGE or inhibiting endocytosis blocks CTSG from entering CRC cells and attenuates CTSG-induced apoptosis. Furthermore, the clathrin coat assembly complex and SNARE proteins were enriched in an arrayed CRISPR/Cas9 screening targeting human membrane trafficking genes. Knocking out SNARE protein STX1A prevents the spread of CTSG in CRC cells and the induction of cleaved PARP. A pooled genome-wide CRISPR/Cas9 screening further identifies the role of CDK1 in the NET-induced killing of CRC cells. Inhibiting CDK1 protected CRC cells from killing by CTSG. Our study reveals novel mechanisms by which CTSG enters and kills CRC cells.