A deep reinforcement learning platform for antibiotic discovery
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Antimicrobial resistance (AMR) is projected to cause up to 10 million deaths annually by 2050, underscoring the urgent need for new antibiotics. Here we present ApexAmphion, a deep-learning framework for de novo design of antibiotics that couples a 6.4-billion-parameter protein language model with reinforcement learning. The model is first fine-tuned on curated peptide data to capture antimicrobial sequence regularities, then optimised with proximal policy optimization against a composite reward that combines predictions from a learned minimum inhibitory concentration (MIC) classifier with differentiable physicochemical objectives. In vitro evaluation of 100 designed peptides showed low MIC values (nanomolar range in some cases) for all candidates (100% hit rate). Moreover, 99 our of 100 compounds exhibited broad-spectrum antimicrobial activity against at least two clinically relevant bacteria. The lead molecules killed bacteria primarily by potently targeting the cytoplasmic membrane. By unifying generation, scoring and multi-objective optimization with deep reinforcement learning in a single pipeline, our approach rapidly produces diverse, potent candidates, offering a scalable route to peptide antibiotics and a platform for iterative steering toward potency and developability within hours.