PET-Microplastics Trigger Endothelial Glycocalyx Loss via ER Stress and ROS Unleashing IL-1β-Driven SMC Switching and Early Aortic Structural Impairment

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Polyethylene terephthalate microplastics (PET-MPs), a major microplastics component identified in human vasculature, pose emerging environmental health risks. This study systemically profiled MPs in human aortic tissues and investigated the mechanisms underlying PET-MPs-induced aortic injury in vivo and in vitro. Chronic oral exposure of Sprague-Dawley rats to PET-MPs (1.0-100 mg/L) resulted in endothelial glycocalyx loss and structural impairment of aortic elastic fibers, with MPs accumulating within aortic endothelial cells. Transcriptomic and biochemical analyses revealed that PET-MPs triggered endoplasmic reticulum stress (ERS) and reactive oxygen species (ROS) generation in human aortic endothelial cells (HAECs), driving glycocalyx degradation and NF-κB-mediated inflammation. Proteomic profiling identified endothelial-derived IL-1β as a key mediator, which subsequently induced phenotypic switching in human aortic smooth muscle cells (HASMCs) in vitro. Pharmacological inhibition of ERS (TUDCA), ROS (NAC), or IL-1β (Canakinumab) attenuated this pathogenic cascade. Crucially, restoration of the glycocalyx using Sulodexide mitigated endothelial dysfunction and downstream HASMC phenotypic switching. These findings establish endothelial glycocalyx degradation via ERS-ROS as a novel mechanism for PET-MPs-induced vascular injury and highlight glycocalyx protection as a potential strategy against environmental microplastic hazards.

Article activity feed