Efficient generation of epitope-targeted de novo antibodies with Germinal

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Obtaining novel antibodies against specific protein targets is a widely important yet experimentally laborious process. Meanwhile, computational methods for antibody design have been limited by low success rates that currently require resource-intensive screening. Here, we introduce Germinal, a broadly enabling generative framework that designs antibodies against specific epitopes with nanomolar binding affinities while requiring only low-n experimental testing. Our method co-optimizes antibody structure and sequence by integrating a structure predictor with an antibody-specific protein language model to perform de novo design of functional complementarity-determining regions (CDRs) onto a user-specified structural framework. When tested against four diverse protein targets, Germinal achieved an experimental success rate of 4-22% across all targets, testing only 43-101 designs for each antigen. Validated nanobodies also exhibited robust expression in mammalian cells and nanomolar binding affinities. We provide open-source code and full computational and experimental protocols to facilitate wide adoption. Germinal represents a milestone in efficient, epitope-targeted de novo antibody design, with notable implications for the development of molecular tools and therapeutics.

Article activity feed