Extracellular matrix chemistry tunes bacterial biofilm metabolism and optimizes fitness

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Chemically complex extracellular matrices define cellular microenvironments and shape cell behavior. We hypothesized a composition–properties–function relationship in these natural living materials, where interactions among matrix components govern material properties and cellular physiology. Using Pseudomonas aeruginosa biofilms as a model system, we show that electrostatic interactions between the cationic polysaccharide Pel and extracellular DNA (eDNA) regulate retention of pyocyanin (PYO), a redox-active metabolite that supports anaerobic metabolism via extracellular electron transfer (EET). Biofilm-mimetic hydrogels and natural biofilms revealed that altering Pel’s charge via pH adjustment or chemical acetylation, or tuning the Pel:eDNA ratio, predictably modulates PYO retention and EET efficiency. Functionally, a lower Pel:eDNA ratio enhances metabolism under oxygen limitation, whereas a higher ratio promotes survival under antibiotic stress. These findings highlight how matrix chemistry encodes tunable material properties that confer biofilm fitness advantages and establish a materials-based framework for understanding extracellular matrices in multicellular communities.

Article activity feed