Characterization and engineering of highly efficient Cas12j genome editors

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The large size of CRISPR-Cas enzymes limits their delivery for therapeutic applications. Cas12j nucleases offers hypercompact alternative but show moderate editing efficiency. To overcome this limitation, we identified eight novel Cas12j orthologues (Cas12j-11 to Cas12j-18) from viral metagenomes. All showed low editing activity in mammalian cells. We engineered T5 exonuclease-Cas12j fusions (T5Exo-Cas12j), two of which, T5Exo-Cas12j-12, and -18 exhibited up to 42% editing in HEK293T and 9% in K-562 cells, outperforming wild-type Cas12j counterparts and comparable to LbCas12a. Intriguingly, robust in cellula editing in both HEK293T and K-562 cells was strictly dependent on the presence of 5′-TAC trinucleotides within the target DNA sequence. Furthermore, we fused the Cas12j orthologues with the TadA8e deaminase and developed base editors, termed Be-(d)Cas12j. Among these, Be-(d)Cas12j-13 demonstrated efficient A-to-G base conversion in mammalian cells. This study expands the CRISPR toolbox by characterizing and engineering novel Cas12j orthologues into compact, high-efficiency genome editors.

Article activity feed