Mechanism of SARS-CoV-2 Nucleocapsid Protein Phosphorylation-induced Functional Switch
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The SARS-CoV-2 nucleocapsid protein (Np) is essential for viral RNA replication and genomic RNA packaging. Phosphorylation of Np within its central Ser-Arg-rich (SRR) linker is proposed to modulate these functions. To gain mechanistic insights into these distinct roles, we performed in vitro biophysical and biochemical studies using recombinantly expressed ancestral Np and phosphomimetic SRR variants. Limited-proteolysis showed minor cleavage differences between wild-type (WT) and phosphomimetic Np, but no major structure or stability changes in the N- and C-terminal domains were observed by circular dichroism spectroscopy and differential scanning fluorimetry, respectively. Mass photometry (MP) revealed that WT Np dimerized more readily than phosphomimetic variants. Crosslinking-MP showed WT Np formed discrete complexes on viral 5ʹ UTR stem-loop (SL) 5 RNA, whereas phosphomimetic Np assembled preferentially on SL1-4. WT Np bound non-specifically to all RNAs tested primarily via hydrophobic interactions, whereas phosphomimetic Np showed selectivity for SARS-CoV-2-derived RNAs. WT Np also compacted and irreversibly bound single-stranded DNA; this activity was significantly reduced by phosphorylation. These mechanistic insights support a model where phosphorylated Np functions in RNA replication and chaperoning, while non-phosphorylated Np facilitates genomic RNA packaging. The findings also help to explain infectivity differences and clinical outcomes associated with SRR linker variants.