Dissecting the unique self-assembly landscape of the HIV-2 capsid protein

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Human immunodeficiency virus type 2 (HIV-2) is a lentivirus closely related to HIV-1 but exhibits distinct molecular and clinical features that influence viral infectivity and efficacy of antiretroviral therapy. The HIV capsid is a critical structural component with multifaceted roles during infection and mediates some of the observed divergence between HIV-1 and HIV-2. Unlike HIV-1, study of the HIV-2 capsid is limited and standard protocols for the in vitro assembly of HIV-1 capsid protein (CA) lattice structures have not been successfully translated to the HIV-2 context. This work identifies effective approaches for the assembly of the HIV-2 CA lattice and leverages this to biochemically characterize HIV-2 CA assemblies and mutant phenotypes. Our findings elaborate on the sensitivity of HIV-2 CA to chemical conditions and reveal that it assembles into a more varied spectrum of particle morphologies compared to HIV-1. Utilizing these assemblies, we tested the hypothesis that HIV-1 and HIV-2 employ divergent mechanisms to stabilize CA oligomer forms and investigate the effects of non-conserved substitutions at the CA inter-protomer interfaces. This work advances our understanding of the key biochemical determinants of HIV-2 CA assembly that are distinct from HIV-1 and may contribute to their divergent virological properties.

Article activity feed