The structure, redox chemistry and motor neuron toxicity of heterodimeric zinc-deficient SOD1-Implications for the toxic gain of function observed in ALS.
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
A subset of familial cases of amyotrophic lateral sclerosis (fALS) are caused by mutations to copper, zinc superoxide dismutase (Cu, Zn SOD1). There are over 200 mutations to SOD1 that have been associated with fALS and the majority of these mutations are dominantly inherited. Thus, individuals are heterozygous and express both wild-type SOD1 and the mutant form of the protein. Paradoxically, when rodent models are produced that mimic the co-expression of wild-type SOD1 with mutant fALS SOD1 the motor neuron disease accelerates. Previously, we have shown that the loss of zinc from an SOD1 kills cultured motor neurons due to a gained, redox activity catalyzed by the active-site copper. Furthermore, motor neuron toxicity of zinc-deficient SOD1 is enhanced by wild-type Cu, Zn SOD1. Because SOD1 exists as a non-covalent dimer, the enhanced toxicity might result from stabilization of the heterodimeric interface between zinc-deficient SOD1 and Cu, Zn-SOD1. However, experimentation with the heterodimer is difficult because SOD1 subunits exchange in minutes. To better characterize the role of dimer stabilization on the enhanced toxicity of fALS mutant SOD1 by wild type SOD1, we genetically tethered a zinc-deficient SOD1 subunit with a Cu, Zn SOD1 subunit with a 16-residue linker. The x-ray structure of the tethered heterodimer shows that zinc-deficient subunit adopts a wild-type-like conformation and is not misfolded. The heterodimer intermediate also produced peroxynitrite from nitric oxide, and the tethered SOD1 was strikingly toxic to primary cultures of motor neurons. This work supports the concept that zinc-deficient SOD1 is a likely toxic intermediate in ALS. Furthermore, the wild-type allele in human familial-SOD1 ALS patients may physically contribute to the dominant inheritance of SOD1 mutations through heterodimer formation.