A molecular atlas of cell-type specific signatures in the parkinsonian striatum
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The progressive degeneration of dopaminergic projections to the striatum is a key disease mechanism in Parkinson’s disease (PD). To define the cellular landscape in the parkinsonian striatum, we mapped the cell-type specific transcriptional landscape in early and progressive PD mouse models and in human PD stages. Our analyses revealed substantial transcriptomic changes across both neuronal and glial populations, with astrocytes and oligodendrocytes exhibiting distinct disease-associated gene expression profiles. Notably, progressive dopamine depletion uncovered differential neuronal vulnerability, identifying eccentric striatal projection neurons (SPNs) and Chst9-expressing direct-pathway SPNs as among the most resilient subtypes in both species. This cross-species resource establishes a comprehensive framework for investigating cell-state dynamics in the parkinsonian striatum and uncovers selectively vulnerable and resistant cell types that can inspire new therapeutic strategies.