Elevated surface La promotes hyperfusion and contributes to impaired resorption in osteopetrosis
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The skeleton is a living, biological tissue responding to the biomechanical demands placed upon it throughout life. The individual bones creating this physiological system are each shaped by a multinucleated cell type - the osteoclast - that sculpts each bone in collaboration with local cellular partners, which offer chemical and even tactile feedback of many sorts. Unfortunately, the perturbation of osteoclast formation and function underpins a broad range of human skeletal pathologies, including osteopetrosis - a systemic pathology characterized by impaired osteoclast resorption leading to skeletal thickening, brittle bones, frailty, and lethality. Here, we describe a molecular dysfunction observed in murine and human models of two forms of osteoclast-rich, autosomal recessive osteopetrosis, and our approach for exploiting this molecular dysfunction to correct pathologic osteoclast hyperfusion and resorptive impairment. We find that La - a manager of osteoclast fusion and subsequent resorptive activity - is greatly elevated at the surface of osteoclasts upon loss of SNX10 or OSTM1 . Using inhibitory antibodies, we suppress excessive La surface function in these mutant osteoclasts, impede osteopetrotic hyperfusion and restore osteoclast resorptive function. We share these observations as proofs-of-principle that osteoclast fusion represents a viable therapeutic target for addressing osteoclast dysfunction in diseases underpinned by excessive osteoclast multinucleation and perturbed resorptive function.