Unravelling the anti-cancer mechanisms elicited by non-covalent thioredoxin reductase inhibitors for triple negative breast cancer therapy
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Thioredoxin reductases (cytosolic TXNRD1 and mitochondrial TXNRD2) are antioxidant enzymes often overexpressed in tumors, including triple negative breast cancer (TNBC), making them promising targets for cancer therapy. Inhibiting these enzymes may worsen the already elevated oxidative stress in cancer cells, ultimately leading to cell death through a pro-oxidant mechanism. However, selectively targeting TXNRDs has been challenging due to the traditional reliance on covalent inhibition strategies. Recent studies have identified a druggable allosteric pocket in this enzyme family, paving the way for the development of novel non-covalent inhibitors, referred to as TXNRD(i)s. These inhibitors have been tested in TNBC models and have demonstrated a range of anti-cancer effects.
To understand the molecular and cellular consequences of TXNRD(i)s, we conducted unbiased transcriptomic analyses and found that the gene expression changes induced by TXNRD(i) treatment closely mirror those resulting from TXNRD1 silencing, reinforcing TXNRD1 as the primary therapeutic target. While TXNRD(i) treatment increases redox stress in TNBC cells, this is not the main driver of the anti-cancer effect. Instead, TXNRD(i)s potently inhibit cell proliferation and induce G1 phase cell cycle arrest. Notably, supplementing cells with exogenous deoxynucleotides restores cell viability, cell cycle progression and partially reverses cell death. These findings indicate that TXNRD(i)s deplete endogenous deoxynucleotide pools and impair ribonucleotide reductase activity as the main mechanism of anti-cancer effects. We further demonstrate that TXNRD(i)s inhibit both TXNRD1 and TXNRD2, and that dual inhibition is more effective in suppressing TNBC cell growth. In vivo , TXNRD(i) treatment significantly impairs TNBC xenograft tumor growth and reduces proliferation-related genes. Collectively, these findings challenge the prevailing paradigm that all TXNRD inhibitors function through a pro-oxidant mechanism, instead highlighting that non-covalent TXNRD(i)s exert their effects by blocking proliferation offering a compelling therapeutic strategy for TNBC and potentially other cancers with elevated TXNRD expression.
Highlights
Non-covalent TXNRD inhibitors increase intracellular redox stress, but this is not the main driver of anti-cancer effects
TXNRD(i)s inhibit both cytosolic TXNRD1 and mitochondrial TXNRD2 enzymes
Both TXNRD1 and TXNRD2 are required for growth and proliferation of triple negative breast cancer cells
Halted proliferation through ribonucleotide reductase dysfunction emerges as the primary driver of anti-cancer effect