Constructed wetlands for aquaculture wastewater treatment: insights on the structural and functional shifts of the aquatic microbial community

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Aquaculture practices generate nutrient-rich effluents with associated microbiological hazards, such as pathogens and antimicrobial resistance genes (ARGs). Despite their growing popularity as nature-based solutions, little is known about how constructed wetlands (CWs) affect the dynamics of microbial communities at the field scale. By combining flow cytometry, 16S rRNA gene sequencing, shotgun metagenomics, and metabolic potential assays, we investigated the structural and functional responses of the aquatic microbial community following the recurrent exposure to CW-treated effluents from an intensive marine fish farm (Orbetello lagoon, Italy). While the CW promoted abundant, metabolically active, and functionally redundant microbial communities, the phylogenetic composition diverged primarily between water and sediments. Microbial profiles in CW outlet waters converged towards those of the lagoon baselines, suggesting gradual ecological recovery. The CW attenuated the occurrence of potential pathogens (e.g., Francisella spp., Campylobacter spp.) and limited ARG dissemination, though sediments remained reservoirs of microbial and genetic signatures. Functional profiles, dominated by chemoheterotrophy, denitrification, and sulfur respiration, remained stable across environments, reflecting microbial resilience. Our results highlight CWs as effective, field-proven solutions to mitigate aquaculture wastewater impacts while preserving core ecosystem services.

Article activity feed