Cannabidiol dampens propagation of hippocampal hyperactivity and differentially modulates feedforward and feedback inhibition

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cannabidiol (CBD) decreases seizures in patients with severe pediatric-onset epilepsies including Dravet, Lennox-Gastaut, and Tuberous Sclerosis syndromes. However, the effects of CBD on neuronal activity and circuits remain obscure. In the mouse hippocampus, we found that CBD causes a GPR55-independent decrease in CA1 pyramidal neuron firing frequency and a GPR55-dependent reduction in CA3 to CA1 hippocampal activity propagation. CBD-mediated decrease in high-frequency activity was mimicked by GPR55 antagonism and prevented by GPR55 deletion and blockade of GABAergic transmission. Dampening high-frequency activity was accompanied by increased recruitment of parvalbumin+ (PV)-INs and reduced recruitment of somatostatin+ (SST)-INs, leveraging the inhibitory subcircuit to limit propagation of hyperactivity. CBD-induced attenuation of high frequency spike propagation was mimicked by pharmacological enhancement and optogenetic engagement of PV-INs. Such increased on-demand recruitment of PV-INs dampened propagation of high-frequency activity to hippocampal CA1 similarly to CBD. We predict that CBD potentially curbs propagation and perpetuation of seizure activity via these mechanisms.

Article activity feed