Sexual dimorphisms in phrenic long-term facilitation following severe acute intermittent hypoxia

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Rigorous pre-clinical research in male rodents defined the cellular mechanisms of respiratory neuroplasticity following brief exposures to hypoxia (acute, intermittent hypoxia; AIH). AIH elicits phrenic long-term facilitation (pLTF), a progressive increase in phrenic nerve amplitude over time. Mechanisms to AIH-induced pLTF are complex and variable depending on the severity of hypoxemia during AIH. Moderate AIH (mAIH; PaO 2 ∼35-45mmHg) triggers spinal serotonin receptor activation to induce pLTF expression. More severe AIH (sAIH; PaO 2 ∼25-30mmHg) induces pLTF through an adenosine receptor-dependent pathway. Here we assessed: 1) if sAIH-induced pLTF is expressed in female rats, and whether sAIH-pLTF is impacted by the estrous cycle; 2) if the magnitude of sAIH-induced pLTF in female rats is similar to male rats; and 3) whether GDX alters the magnitude of sAIH-induced pLTF. We hypothesized that female rats would express sAIH-induced pLTF, and that circulating steroid hormone levels would have minimal impact on sAIH-induced pLTF in either sex. Our findings reveal that female rats express robust pLTF (∼106% above baseline phrenic amplitudes) in response to sAIH, with minimal effects of estrous cycle stage. Female rats also showed a nearly 50% higher magnitude in sAIH-pLTF than males (p=0.006). Following GDX, pLTF magnitude was reduced in female rats (p=0.04), while males were unable to express pLTF. These findings predict unique cellular mechanisms to pLTF in female rats following sAIH, and sex-specific impacts of steroid hormone signaling on the expression of respiratory neuroplasticity.

Article activity feed