A Cryptic Binding Pocket Regulates the Metal-Dependent Activity of Cas9
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Cas9 is a metal-dependent nuclease that has revolutionized gene editing across diverse cells and organisms exhibiting varying ion uptake, metabolism, and concentrations. However, how divalent metals impact its catalytic function, and consequently its editing efficiency in different cells, remains unclear. Here, extensive molecular simulations, Markov State Models, biochemical and NMR experiments, demonstrate that divalent metals – Mg 2+ , Ca 2+ , and Co 2+ – promote activation of the catalytic HNH domain by binding within a dynamically forming divalent metal binding pocket (DBP) at the HNH-RuvC interface. Mutations in DBP residues disrupt HNH activation and impair the coupled catalytic activity of both nucleases, identifying this cryptic DBP as a key regulator of Cas9’s metal-dependent activity. The ionic strength thereby promotes Cas9’s conformational activation, while its catalytic activity is metal-specific. These findings are critical to improving the metal-dependent function of Cas9 and its use for genome editing in different cells and organisms.