Decoding the emergent properties of microbial community functions through sub-community observations and interpretable machine learning

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The functions of microbial communities, including substrate conversion and pathogen suppression, arise not as a simple sum of individual species’ capabilities but through complex interspecies interactions. Understanding how such functions arise from individual species and their interactions remains a major challenge, limiting efforts to rationally design and control microbial communities. Because current holistic (meta-omics) and reductionist (isolation- or single-cell-based) approaches struggle to capture these emergent microbial community functions, this study explores an intermediate strategy: analyzing simple sub-community combinations to enable a bottom-up understanding of community-level functions. To examine the validity of this approach, we used a nine-member synthetic microbial community capable of degrading the environmental pollutant aniline, and systematically generated a dataset of 256 sub-community combinations and their associated functions. Analyses using random forest models revealed that the sub-community combinations of just three to four species enabled the quantitative prediction of functions in larger communities (5–9 member; Pearson’s r = 0.780–0.801). Prediction performance remained robust even with limited sub-community data, suggesting applicability to more diverse microbial communities where exhaustive sub-community observation is infeasible. Moreover, interpreting models trained on these simple sub-community combinations enabled the identification of key species and interspecies interactions that strongly influence the overall community function. These findings provide a methodological framework for mechanistically dissecting complex microbial community functions through sub-community-based analysis.

Article activity feed