40 Hz Audiovisual Stimulation Improves Sustained Attention and Related Brain Oscillations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Gamma oscillations (30-100 Hz) have long been theorized to play a key role in sensory processing and attention by coordinating neural firing across distributed neurons. Gamma oscillations can be generated internally by neural circuits during attention or exogenously by stimuli that turn on and off at gamma frequencies. However, it remains unknown if driving gamma activity via exogenous sensory stimulation affects attention. We tested the hypothesis that non-invasive audiovisual stimulation in the form of flashing lights and sounds (flicker) at 40 Hz improves attention in an attentional vigilance task and affects neural oscillations associated with attention. We recorded scalp EEG activity of healthy adults (n=62) during one hour of either 40 Hz audiovisual flicker, no flicker as control, or randomized flicker as sham stimulation, while subjects performed a psychomotor vigilance task. Participants exposed to 40 Hz flicker stimulation had better accuracy and faster reaction times than participants in the control groups. The 40 Hz group showed increased 40 Hz activity compared to the control groups in agreement with previous studies. Surprisingly, 40 Hz subjects had significantly lower delta power (2-4 Hz), which is associated with arousal, and higher functional connectivity in lower alpha (8-10 Hz), which is associated with attention processes. Furthermore, decreased delta power and increased lower alpha functional connectivity were correlated with better attention task performance. This study reveals how gamma audiovisual stimulation improves attention performance with potential implications for therapeutic interventions for attention disorders and cognitive enhancement.

Article activity feed