SARS-CoV-2 NSP14 inhibitor exhibits potent antiviral activity and reverses NSP14-driven host modulation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The emergence of SARS-CoV-2 variants and drug-resistant mutants highlights the urgent need for novel antiviral therapeutics. SARS-CoV-2 NSP14, an N7-guanosine methyltransferase, plays a critical role in viral RNA capping, enabling viral replication and immune evasion. While NSP14 has emerged as a promising drug target, its role in host-virus crosstalk and the cellular consequences of NSP14 inhibition remain poorly understood. Here, we present the identification and characterization of C10, a highly potent and selective first-in-class non-nucleoside inhibitor of the NSP14 S-adenosylmethionine (SAM)-binding pocket. C10 demonstrates robust antiviral activity against SARS-CoV-2, including its variants, with EC 50 values ranging from 64.03 to 301.9 nM, comparable to the FDA-approved drug remdesivir in our cell-based assays. C10 also exhibits broad-spectrum activity against other betacoronaviruses and inhibits SARS-CoV-2 at the replication stage. C10 suppresses viral translation and exhibits immunostimulatory effect. Additionally, C10 specifically reversed NSP14-mediated alterations in host transcriptome. The antiviral efficacy of C10 was further validated in a transgenic mouse model of SARS-CoV-2 infection. Our findings highlight C10 as a promising candidate for the development of effective treatments against SARS-CoV-2 and its emerging variants. This study also uncovers a novel mechanism of NSP14 in SARS-CoV-2 pathogenesis and its therapeutic potential, providing insights that may extend to other viral capping methyltransferases.