Thermodynamic Analysis of Protein-Nanoparticle Interactions Links Binding Affinity and Structural Stability
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
When nanoparticles and nanoplastics enter biological fluids, their surfaces are rapidly coated with proteins, forming a corona that governs biological responses. However, understanding protein- surface interaction energetics remains a significant challenge. Here, we examine how protein charge distribution affects adsorption to polystyrene nanoparticles (PSNPs) by generating a series of lysine-to-alanine variants of the GB3 protein. Using isothermal titration calorimetry (ITC), we found that the K19A variant binds most strongly to both non-functionalized and carboxylate- functionalized PSNPs. ITC thermograms indicate that K19A forms a stable monolayer, while other variants exhibit multilayer adsorption. We hypothesize that removing lysine at position 19 creates a flatter, more neutral interaction surface that promotes efficient initial binding. Fluorescence denaturation experiments show that PSNPs destabilize GB3 protein variants, and binding correlates strongly with protein unfolding (r = 0.82, p < 0.01 for COOH-PSNPs and r = 0.76, p < 0.03 for non-functionalized PSNPs). These results reveal how protein stability and charge distribution shape adsorption thermodynamics, offering a framework for predicting protein-surface interactions.