Advancing Codon Language Modeling with Synonymous Codon Constrained Masking
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Codon language models offer a promising framework for modeling protein-coding DNA sequences, yet current approaches often conflate codon usage with amino acid semantics, limiting their ability to capture DNA-level biology. We introduce SynCodonLM, a codon language model that enforces a biologically grounded constraint: masked codons are only predicted from synonymous options, guided by the known protein sequence. This design disentangles codon-level from protein-level semantics, enabling the model to learn nucleotide-specific patterns. The constraint is implemented by masking non-synonymous codons from the prediction space prior to softmax. Unlike existing models, which cluster codons by amino acid identity, SynCodonLM clusters by nucleotide properties, revealing structure aligned with DNA-level biology. Furthermore, SynCodonLM outperforms existing models on 6 of 7 benchmarks sensitive to DNA-level features, including mRNA and protein expression. Our approach advances domain-specific representation learning and opens avenues for sequence design in synthetic biology, as well as deeper insights into diverse bioprocesses.