Overcoming air-water interface-induced artifacts in Cryo-EM with protein nanocrates

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Contact with the air-water interface can bias the orientation of macromolecules during cryo-EM sample preparation, leading to uneven sample distribution, preferred orientation, and damage to the molecules of interest. To prevent this, we describe a method to encapsulate target proteins within highly hydrophilic, structurally homogeneous, and stable protein shells, which we refer to as “nanocrates” for this purpose. Here, we describe packaging, data acquisition, and reconstruction of three proof-of-principle examples, each illuminating a different aspect of the method: apoferritin (ApoF, demonstrating high-resolution), thyroglobulin (Tg, solving a known preferred orientation problem), and 7,8-dihydroneopterin aldolase (DHNA, a structure previously uncharacterized by cryo-EM).

Article activity feed