A Phosphorelay Circuit Drives Extracellular Alkalinization in Plant Receptor Kinase Signaling

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Extracellular alkalinization has long been recognized as a hallmark of plant cell-surface receptor activation, including during pattern-triggered immunity (PTI); yet the mechanisms driving elicitor-induced alkalinization and its role in immune signaling remain unclear. Here, we demonstrate that inhibition of autoinhibited H + -ATPases (AHAs) is required for elicitor-induced extracellular alkalinization. This alkalinization is essential for immune signaling mediated by diverse plasma membrane-localized receptor kinases (RKs) through modulation of ligand-receptor interactions. Notably, RKs transduce elicitor-triggered signaling via BOTRYTIS-INDUCED KINASE 1 (BIK1), which inhibits AHA activity by disrupting AHA-GENERAL REGULATORY FACTOR (GRF) interactions through a conserved phosphorylation event. Interestingly, this pathway is crucial for cell wall damage (CWD) responses involving the RK MALE DISCOVERER 1-INTERACTING RECEPTOR LIKE KINASE 2 (MIK2) and its ligand, SERINE RICH ENDOGENOUS PEPTIDE 18 (SCOOP18). Our findings reveal a conserved phospho-regulatory pathway that governs extracellular alkalinization to coordinate plant immune signaling, offering new insights into plant stress resilience.

Article activity feed