Mechanistic insights and in vivo HIV suppression by the BRD4-targeting small molecule ZL0580

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Epigenetic suppression and durable silencing of HIV represent a promising strategy to achieve ART-free remission, consistent with the “block and lock” HIV cure paradigm. BRD4 is a host epigenetic reader and plays a critical role in HIV transcriptional regulation. We previously identified ZL0580, a first-in-class BRD4-selective small molecule distinct from the pan-BET inhibitor JQ1, which induces HIV epigenetic suppression. However, detailed molecular mechanisms, pharmacokinetics (PK), and in vivo HIV-suppressive efficacy of ZL0580 remain undefined. Here, we show that ZL0580 selectively targets BRD4 bromodomain 1 (BD1) through interaction with a key glutamic acid residue (E151), as determined by structural modeling and mutagenesis. Transcriptomic profiling by RNA-seq reveals that ZL0580 and JQ1 induce opposing gene expression programs, consistent with their distinct effects on HIV proviral transcription and latency. In a humanized mouse model of HIV infection, ZL0580 monotherapy, or in combination with ART, potently suppressed active HIV replication, reducing the plasma viremia to nearly undetectable levels, and delayed viral rebound following treatment interruption. Collectively, these findings establish ZL0580 as an epigenetic suppressor of HIV in vivo and provide proof-of-concept for its potential as a “block and lock” HIV cure candidate, warranting further optimization and development.

Article activity feed