Proteo-transcriptomic reprogramming and resource reallocation define the aging mammalian brain

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Brain aging is a major risk for neurodegeneration, yet the underlying molecular mechanisms remain poorly understood. Here we performed an integrative proteo-transcriptomic analysis of the aging mouse brain, uncovering molecular signatures of aging through the assessment of protein aggregation, mRNA relocalization, and comparative proteomics across eight models of premature aging and neurodegeneration. We identified dynamic changes in physiological aging highlighting differences in synaptic maintenance and energy-allocation. These were linked to changes associated with fundamental protein biochemical properties such as size and net charge. Network analysis highlighted a decrease in mitochondrial complex I proteins not compensated at the mRNA level. Aggregation of 60S ribosome subunits indicated deteriorating translation efficiency and was accompanied by mitochondrial and proteasomal imbalance. The analysis of the nine models revealed key similarities and differences between physiological aging and pathology. Overall, our study provides an extensive resource on molecular aging, and offers insights into mechanisms predisposing to neurodegeneration, easily accessible at our Brain Aging and Molecular Atlas Project (BrainAging-MAP) website.

Article activity feed