Deep learning-based identification of necrosis and microvascular proliferation in adult diffuse gliomas from whole-slide images
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
For adult diffuse gliomas (ADGs), most grading can be achieved through molecular subtyping, retaining only two key histopathological features for high-grade glioma (HGG): necrosis (NEC) and microvascular proliferation (MVP). We developed a deep learning (DL) framework to automatically identify and characterize these features. We trained patch-level models to detect and quantify NEC and MVP using a dataset that employed active learning, incorporating patches from 621 whole-slide images (WSIs) from the Chinese Glioma Genome Atlas (CGGA). Utilizing trained patch-level models, we effectively integrated the predicted outcomes and positions of individual patches within WSIs from The Cancer Genome Atlas (TCGA) cohort to form datasets. Subsequently, we introduced a patient-level model, named PLNet (Probability Localization Network), which was trained on these datasets to facilitate patient diagnosis. We also explored the subtypes of NEC and MVP based on the features extracted from patch-level models with clustering process applied on all positive patches. The patient-level models demonstrated exceptional performance, achieving an AUC of 0.9968, 0.9995 and AUPRC of 0.9788, 0.9860 for NEC and MVP, respectively. Compared to pathological reports, our patient-level models achieved the accuracy of 88.05% for NEC and 90.20% for MVP, along with a sensitivity of 73.68% and 77%. When sensitivity was set at 80%, the accuracy for NEC reached 79.28% and for MVP reached 77.55%. DL models enabled more efficient and accurate histopathological image analysis which will aid traditional glioma diagnosis. Clustering-based analyses utilizing features extracted from patch-level models could further investigate the subtypes of NEC and MVP.