Parallel and convergent pathways for multifeature visual processing in larval zebrafish sensorimotor decision-making

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Animals continuously extract and evaluate diverse sensory information from the environment to guide behavior. Yet, how neural circuits integrate multiple, potentially conflicting, inputs during decision-making remains poorly understood. Here, we use larval zebrafish to address this question, leveraging their robust optomotor response to coherent random dot motion and phototaxis towards light. We demonstrate that animals employ an additive behavioral algorithm of three visual features: motion coherence, luminance level, and changes in luminance. Using brain-wide two-photon imaging, we identify the loci of these computations, with the anterior hindbrain emerging as a multifeature sensory integration hub. Through single-cell neurotransmitter and morphological analyses of functionally identified neurons, we characterize potential connections within and across computational nodes. These experiments reveal three parallel and converging pathways, matching our behavioral results. Our study provides a mechanistic brain-wide account of how a vertebrate brain integrates multiple features to drive sensorimotor decisions, bridging the algorithmic bases of behavior and its neural implementation.

Article activity feed