A non-catalytic role for RFC in PCNA-mediated processive DNA synthesis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ring-shaped sliding clamp PCNA enables DNA polymerases to perform processive DNA synthesis during replication and repair. The loading of PCNA onto DNA is catalyzed by the ATPase clamp loader RFC. Using a single-molecule platform to visualize the dynamic interplay between PCNA and RFC on DNA, we unexpectedly discovered that RFC continues to associate with PCNA after loading, contrary to the conventional view. Functionally, this clamp-loader/clamp complex is required for processive DNA synthesis by polymerase δ (Polδ), as the PCNA-Polδ assembly is inherently unstable. This architectural role of RFC is dependent on the BRCT domain of Rfc1, and mutation of its DNA-binding residues causes sensitivity to DNA damage in vivo. We further showed the FEN1 flap endonuclease can also stabilize the PCNA-Polδ interaction and mediate robust synthesis. Overall, our work revealed that, beyond their canonical enzymatic functions, PCNA-binding proteins harbor non-catalytic functions essential for DNA replication and genome maintenance.

Article activity feed