One Thousand SARS-CoV-2 Antibody Structures Reveal Convergent Binding and Near-Universal Immune Escape

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Since the emergence of SARS-CoV-2, understanding how antibodies recognize and adapt to viral evolution has been central to vaccine and therapeutic developments. To date, over 1,100 SARS-CoV-2 antibody structures, 16% of all known antibody-antigen complexes, have been resolved, marking the largest structural biology effort towards a single pathogen. Here, we present a comprehensive analysis of this landmark dataset to investigate the principles of antibody recognition and immune escape. Human immunoglobulins (IgGs) and camelid single-chain antibodies dominate the dataset, collectively mapping 99% of the receptor-binding domain surface. Despite remarkable sequence and conformational diversity, antibodies exhibit striking convergence in their paratope structures, revealing evolutionary constraints in epitope selection. Structural and functional analyses reveal near-universal immune escape of antibodies, including all clinical monoclonals, by advanced variants such as KP3.1.1. On average, over one-third of antibody epitope residues are mutated. These findings support pervasive immune escape, underscoring the need to effectively leverage multi-epitope targeting strategies to achieve durable immunity.

Article activity feed