Discovery and Optimization of LAG-3-Targeted Small Molecules via DNA-Encoded Chemical Library (DEL) Screening for Cancer Immunotherapy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Lymphocyte activation gene-3 protein (LAG-3) is an immune checkpoint receptor that promotes T cell exhaustion and immune evasion in cancer. While antibody-based LAG-3 inhibitors have reached the clinic, small molecule modulators remain unexplored. Here, we report compound 11 , the most potent small molecule LAG-3 inhibitor to date. Identified via a 4.2-billion compound DNA-encoded chemical library (DEL) screen, compound 11 binds LAG-3 with submicromolar affinity and disrupts the LAG-3/MHCII interaction. Molecular modeling suggests direct antagonism at the LAG-3/MHCII interface with potential allosteric effects. In functional assays, compound 11 enhances IFN-γ secretion and promotes tumor cell killing in co-cultures of PBMCs and cancer cells. Importantly, compound 11 also exhibits favorable pharmacokinetics. These findings support the development of small molecule LAG-3 inhibitors as immunotherapeutic agents and provide a foundation for further optimization.

Table of Contents artwork

Article activity feed