Hi-Cformer enables multi-scale chromatin contact map modeling for single-cell Hi-C data analysis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Single-cell Hi-C captures the three-dimensional organization of chromatin in individual cells and provides insights into fundamental genomic processes such as gene regulation and transcription. While analyses of bulk Hi-C data have revealed multi-scale chromatin structures like A/B compartments and topologically associating domains, single-cell Hi-C data remain challenging to analyze due to sparsity and uneven distribution of chromatin contacts across genomic distances. These characteristics lead to strong signals near the diagonal and complex multi-scale local patterns in single-cell contact maps. Here, we propose Hi-Cformer, a transformer-based method that simultaneously models multi-scale blocks of chromatin contact maps and incorporates a specially designed attention mechanism to capture the dependencies between chromatin interactions across genomic regions and scales, enabling the integration of both global and fine-grained chromatin interaction features. Building on this architecture, Hi-Cformer robustly derives low-dimensional representations of cells from single-cell Hi-C data, achieving clearer separation of cell types compared to existing methods. Hi-Cformer can also accurately impute chromatin interaction signals associated with cellular heterogeneity, including 3D genome features such as topologically associating domain-like boundaries and A/B compartments. Furthermore, by leveraging its learned embeddings, Hi-Cformer can be extended to cell type annotation, achieving high accuracy and robustness across both intra- and inter-dataset scenarios.

Article activity feed