The Malate–Aspartate Shuttle supports thermogenic lipid mobilization in brown adipocytes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Brown adipose tissue (BAT) plays a central role in thermogenesis by coupling fatty acid oxidation to heat production. Efficient BAT thermogenic activity requires enhanced glycolytic flux, which in turn depends on continuous regeneration of cytosolic NAD⁺ to sustain glyceraldehyde-3-phosphate dehydrogenase activity. This regeneration is mediated by three main pathways: lactate dehydrogenase, the glycerol-3-phosphate shuttle, and the malate–aspartate shuttle (MASh). We previously showed that inhibition of the mitochondrial pyruvate carrier increases energy expenditure in brown adipocytes via MASh activation. However, the specific contribution of MASh to BAT energy metabolism remains poorly defined. Here, we show that MASh is functional and directly regulates lipid metabolism in BAT. Enzymatic activities of cytosolic and mitochondrial malate dehydrogenases and glutamic–oxaloacetic transaminases in BAT were comparable to those in the liver. Using a reconstituted system of isolated BAT mitochondria and cytosolic MASh enzymes, we demonstrated that extra-mitochondrial NADH is efficiently reoxidized in a glutamate-dependent manner via MASh. Genetic silencing of the mitochondrial carriers critical to MASh—namely the oxoglutarate carrier (OGC1) and aspartate–glutamate carrier (Aralar1) had no apparent effects on respiratory rates. However, silencing either OGC1 or Aralar1 led to the accumulation of small lipid droplets and impaired norepinephrine-induced lipolysis. Taken together, our data indicate a novel role of MASh in regulating BAT lipid homeostasis with potential implications to body energy expenditure and thermogenesis.

Article activity feed