Coronavirus protein interaction mapping in bat and human cells identifies molecular and genetic switches for immune evasion and replication
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Coronaviruses, including SARS-CoV-2, can cause severe disease in humans, whereas reservoir hosts like Rhinolophus bats remain asymptomatic. To investigate how host-specific protein-protein interactions (PPIs) influence infection, we generated comparative PPI maps for SARS-CoV-2 and its bat-origin relative RaTG13 using affinity purification-mass spectrometry (AP-MS) in human and Rhinolophus ferrumequinum (RFe) bat cells. This approach identified both conserved and virus- and host-specific interactions that regulate infection dynamics. Notably, SARS-CoV-2 required a non-synonymous mutation in nucleocapsid to replicate in bat cells expressing human ACE2 and TMPRSS2. Analysis of the viral protein Orf9b revealed differential interactions with mitochondrial proteins Tom70 and MTARC2. A single residue difference in Orf9b between SARS-CoV-2 and RaTG13 functions as a molecular switch, weakening Tom70 binding and immune evasion in human cells while enhancing interaction with the bat-specific restriction factor MTARC2. These findings demonstrate how a single-residue substitution can reshape virus-host interactions and contribute to immune evasion and host adaptation.