Targeting RUNX1 in Macrophages Facilitates Cardiac Recovery

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Despite advances in disease treatment, our understanding of how damaged organs recover and the mechanisms governing this process remain poorly defined. Here, we mapped the transcriptional and regulatory landscape of human cardiac recovery using single cell multiomics. Macrophages emerged as the most reprogrammed cell type. Deep learning identified the transcription factor RUNX1 as a key regulator of this process. Macrophage-specific Runx1 deletion recapitulated the human cardiac recovery phenotype in a chronic heart failure model. Runx1 deletion reprogrammed macrophages to a reparative phenotype, reduced fibrosis, and promoted cardiomyocyte adaptation. RUNX1 chromatin profiling revealed a conserved regulon that diminished during recovery. Mechanistically, the epigenetic reader BRD4 controlled Runx1 expression in macrophages. Chromatin activity mapping, combined with CRISPR perturbations, identified the precise regulatory element governing Runx1 expression. Therapeutically, small molecule Runx1 inhibition was sufficient to promote cardiac recovery. Our findings uncover a druggable RUNX1 epigenetic mechanism that orchestrates recovery of heart function.

Article activity feed