HuiduRep: A Robust Self-Supervised Framework for Learning Neural Representations from Extracellular Recordings
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Extracellular recordings are transient voltage fluctuations in the vicinity of neurons, serving as a fundamental modality in neuroscience for decoding brain activity at single-neuron resolution. Spike sorting, the process of attributing each detected spike to its corresponding neuron, is a pivotal step in brain sensing pipelines. However, it remains challenging under low signal-to-noise ratio (SNR), electrode drift, and cross-session variability. In this paper, we propose HuiduRep , a robust self-supervised representation learning framework that extracts discriminative and generalizable features from extra-cellular recordings. By integrating contrastive learning with a denoising autoencoder, HuiduRep learns latent representations robust to noise and drift. With HuiduRep, we develop a spike sorting pipeline that clusters spike representations without ground truth labels. Experiments on hybrid and real-world datasets demonstrate that HuiduRep achieves strong robustness. Furthermore, the pipeline outperforms state-of-the-art tools such as KiloSort4 and MountainSort5. These findings demonstrate the potential of self-supervised spike representation learning as a foundational tool for robust and generalizable processing of extracellular recordings.