A conserved mechanism of membrane fusion in nuclear pore complex assembly

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The nuclear pore complex (NPC) forms a large channel that spans the double lipid bilayer of the nuclear envelope and is the central gateway for macromolecular transport between the nucleus and cytoplasm in eukaryotes. NPC biogenesis requires the coordinated assembly of over 500 proteins culminating in the fusion of the inner and outer nuclear membranes. The molecular mechanism of this membrane fusion step that occurs in all eukaryotes is unknown. Here, we elucidate the mechanism by which two paralogous transmembrane proteins, Brl1 and Brr6, mediate membrane fusion in S. cerevisiae. Both proteins form multimeric, ring-shaped complexes with membrane remodeling activity. Brl1 is enriched at NPC assembly sites via a nuclear export sequence and then interacts with Brr6 across the nuclear envelope lumen through conserved hydrophobic loops. Disrupting this interaction blocks fusion and halts NPC assembly. Molecular dynamics simulations suggest that the Brl1-Brr6 complex drives membrane fusion by forming a channel across bilayers that enables lipid exchange. Phylogenetic analyses reveal that Brl1/Brr6 homologues are broadly distributed across eukaryotes, and functional experiments in human cells and D. melanogaster establish CLCC1 as an NPC fusogen in metazoans. Together, our results uncover a novel, conserved mechanism for membrane fusion in eukaryotes.

Article activity feed