Interactions between sensory-biased and supramodal working memory networks in the human cerebral cortex
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Human working memory is supported by a broadly distributed set of brain networks. Content-specific networks communicate with a domain-general, supramodal network that is recruited regardless of the type of content. Here, we contrasted visual and auditory working memory tasks to examine interactions between the supramodal network and two content-specific networks. Functional connectivity among visual-biased, auditory-biased, and supramodal working memory networks was assayed by collecting task and resting-state fMRI data from 24 human participants (age 18-43; 11 men and 13 women). At rest, as found previously, the supramodal network exhibited stronger functional connectivity with the visual-biased network than with the auditory-biased network. This asymmetry raises questions about how networks communicate to support robust performance across modalities. However, during auditory task performance, dynamic changes increased auditory network connectivity with supramodal and visual-biased frontal regions, while decreasing connectivity from posterior visual areas to supramodal and frontal visual regions. In contrast, the visual task produced weak changes. Across individuals, auditory working memory precision correlated with the strength of auditory network connectivity changes, while no such brain-behavior link was observed for visual working memory. These results demonstrate an asymmetry in working memory network organization and reveal that dynamic reorganization accompanies performance of working memory tasks.