Deconvolution of Single Homeologous Polymorphism (SHP) drives phylogenetic analysis of allopolyploids
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The genomic and evolutionary study of allopolyploid organisms involves multiple copies of homeologous chromosomes, making their assembly, annotation, and phylogenetic analysis challenging. Bioinformatics tools and protocols have been developed to study polyploid genomes, but sometimes require the assembly of their genomes, or at least the genes, limiting their use. We have developed AlloSHP, a command-line tool for detecting and extracting single homeologous polymorphisms (SHPs) from the subgenomes of allopolyploid species. This tool integrates three main algorithms, WGA, VCF2ALIGNMENT and VCF2SYNTENY, and allows the detection SHPs for the study of diploid-polyploid complexes with available diploid progenitor genomes, without assembling and annotating the genomes of the allopolyploids under study. AlloSHP has been validated on three diploid-polyploid plant complexes, Brachypodium , Brassica , and Triticum - Aegilops , and a set of synthetic hybrid yeasts and their progenitors of the genus Saccharomyces . The results and congruent phylogenies obtained from the four datasets demonstrate the potential of AlloSHP for the evolutionary analysis of allopolyploids with a wide range of ploidy and genome sizes.
AlloSHP combines the strategies of simultaneous mapping against multiple reference genomes and syntenic alignment of these genomes to call SHPs, using as input data a single VCF file and the reference genomes of the known or closest extant diploid progenitor species. This novel approach provides a valuable tool for the evolutionary study of allopolyploid species, both at the interspecific and intraspecific levels, allowing the simultaneous analysis of a large number of accessions and avoiding the complex process of assembling polyploid genomes.