An Automated End-to-End Workflow for Production of Secreted Proteins in Transfected Mammalian Cells
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The advancement of automation technologies has helped to enable a surge in large-scale screening efforts across fields such as molecular biology, protein biochemistry, cell biology, and structural biology. In the context of this “omics”-driven research, there is a need to generate automation platforms that are more flexible and less expensive, so that they can be utilized for basic research conducted by small groups. A key challenge in automation lies in developing methods that can replicate fine motor techniques that are normally performed manually by researchers at the bench. We are engaged in a large-scale project to map interactions among human cell-surface and secreted proteins and assess their effects on cells. This project involves production of a library of more than 2000 recombinant His-tagged fusion proteins secreted from transfected Expi293 cells. To execute such a project with a small group at an academic institution required construction of an affordable automated system that could also be used by other investigators. This led us to develop a high-throughput, 96-well format automation platform for end-to-end protein production. The workflow includes transformation of E. coli, plasmid DNA preparation, transient transfection, protein purification, desalting and buffer exchange, protein quantification, and normalization of protein concentrations, resulting in assay-ready proteins. The system is built around an in-house engineered modular robotic platform that integrates liquid handling with a suite of interchangeable ‘plug-and-play’ mobile enclosed device modules. Housed within a BSL-2 sterile environment, the platform enables flexible, fully automated workflows and can be readily customized for diverse user-defined protocols.