OpenDVP: An experimental and computational framework for community-empowered deep visual proteomics

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Deep visual proteomics (DVP) is an emerging approach for cell type-specific and spatially resolved proteomics. However, its broad adoption has been constrained by the lack of an open-source end-to-end workflow in a community-driven ecosystem. Here, we introduce openDVP, an experimental and computational framework for simplifying and democratizing DVP. OpenDVP integrates open-source software for image analysis, including MCMICRO, QuPath, and Napari, and uses the scverse data formats AnnData and SpatialData for multi-omics integration. It offers two workflows: a fast-track pipeline requiring no image analysis expertise and an artificial intelligence (AI)-powered pipeline with recent algorithms for image pre-processing, segmentation, and spatial analysis. We demonstrate openDVP’s versatility in three archival tissue studies, profiling human placenta, early-stage lung cancer, and locally relapsed breast cancer. In each study, our framework provided insights into health and disease states by integrating spatial single-cell phenotypes with exploratory proteomic data. Finally, we introduce deep proteomic profiling of cellular neighborhoods as a scalable approach to accelerate spatial discovery proteomics across biological systems.

Article activity feed