Phenotypic Screening Identifies Flunarizine as an Inhibitor of Radiotherapy-Induced Astrocyte Reactivity with Therapeutic Potential in Glioblastoma
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Radiotherapy is part of the standard-of-care for glioblastoma, yet tumors invariably recur as incurable lesions post-treatment. Recent studies suggest that radiation-induced astrocyte reactivity fosters a tumor-supportive environment, however effective strategies targeting reactive astrocyte phenotypes are lacking. Using a novel image-based assay, we screened over 1,700 small molecule compounds, identifying 29 that inhibit radiation-induced astrocyte reactivity in human astrocytes. Among these, Flunarizine, a calcium-entry blocker approved for migraine treatment, significantly reduced astrocyte reactivity in vitro and in vivo. In a genetically engineered glioblastoma mouse model, combining Flunarizine with radiotherapy markedly improved survival without affecting unirradiated controls, indicating specificity for a radiation-induced phenotype. Mechanistically, Flunarizine inhibited radiation-induced fibrosis in vivo and directly suppressed astrocytic TGF-beta activation in vitro. Notably, Flunarizine treatment had no direct effect on primary glioblastoma cells, emphasizing its microenvironmental specificity. In conclusion, we identified Flunarizine as a promising repurposed compound capable of effectively mitigating radiation-induced astrocyte reactivity and delaying glioblastoma recurrence. This approach offers a viable therapeutic strategy to enhance current glioblastoma treatments.