High-Resolution EEG Source Reconstruction from PCA-Corrected BEM-FMM Reciprocal Basis Funcions: A Study with Visual Evoked Potentials from Intermittent Photic Stimulation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Modern automated human head segmentations can generate high-resolution computational meshes involving many non-nested tissues. However, most source reconstruction software is limited to 3 –4 nested layers of low resolution and a small number of dipolar sources∼ 10, 000.
Recently, we introduced modeling techniques for source reconstruction of magnetoencephalographic (MEG) signals using the reciprocal approach and the boundary element fast multipole method (BEM-FMM). The technique of BEM-FMM can process both nested and non-nested models with as many as 4 million surface elements.
In this paper, we present an analogue technique for source reconstruction of electroencephalographic (EEG) signals based on cortical global basis functions. The present work uses Helmholtz reciprocity to relate the reciprocally-generated lead-field matrices to their direct counterpart, while resolving the issue of possible biases toward the reference electrode.
Our methodology is tested with experimental EEG data collected from a cohort of 12, young and healthy, volunteers subjected to intermittent photic stimulation (IPS). Our novel high-resolution source reconstruction models can have impact on mental health screening as well as brain-computer inter-faces.