Zinc-Enhanced Activity of an Antimicrobial Halogenated Phenazine Against Streptococcus mutans and Other Gram-positive Bacteria
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Halogenated phenazine (HP) compounds have shown promise as antimicrobial agents, particularly against biofilm-associated Gram-positive pathogens. Among these compounds, HP-29 demonstrates potent activity against methicillin-resistant Staphylococcus aureus by inducing rapid iron starvation. As maintenance of trace metals homeostasis is critical for the survival of Streptococcus mutans , this study investigated the antimicrobial efficacy of HP-29 and the impact of metal supplementation on this major oral and occasional systemic pathogen. As anticipated, HP-29 inhibited S. mutans growth in a dose-dependent manner, with iron supplementation alleviating the antimicrobial effect. Cobalt, manganese, or nickel supplementation also mitigated the inhibitory activity of HP-29 but, unexpectedly, the addition of zinc greatly enhanced HP-29 antimicrobial activity. This zinc-driven potentiation of HP-29 extended to other Gram-positive pathogens, including Enterococcus faecalis and S. aureus . Inductively coupled plasma mass spectrometry analysis revealed that intracellular iron content decreased significantly following exposure to HP-29. At the same time, exposure to HP-29 led to a slight increase in intracellular zinc, mirroring the increase observed in cells exposed to excess zinc. When combined with zinc, HP-29 triggered a 5-fold increase in intracellular zinc and reduced manganese levels by ∼50%. Transcriptome analysis showed that HP-29, with or without zinc, altered expression of genes linked to iron and manganese uptake as well as zinc efflux, suggesting broad disruption of metal ion regulation. These findings highlight HP-29 as a potent antimicrobial that broadly impairs metal homeostasis. The unexpected synergy of HP-29 with zinc points toward a promising dual-agent therapeutic strategy against Gram-positive pathogens.
IMPORTANCE
Widespread development of antibiotic resistance has created a constantly moving target when combating infectious microbes. Here, we further explore an antimicrobial halogenated phenazine, HP-29, which is effective against Gram-positive bacteria through disruption of intracellular trace metal equilibrium. We showed that HP-29 inhibits growth of the oral and systemic pathogen Streptococcus mutans and that its antimicrobial effect is greatly potentiated by the addition of zinc. The zinc-mediated enhancement of HP-29’s efficacy was also observed in other Gram-positive pathogens, including Enterococcus faecalis and Staphylococcus aureus . Intracellular trace metal quantifications and transcriptome analysis confirmed that HP-29 treatment impairs trace metal homeostasis, an outcome that is exacerbated when S. mutans is treated with both HP-29 and zinc. The observed synergy of HP-29 with zinc supports the development of a dual-agent therapeutic strategy against Gram-positive pathogens.