Proline 110 is necessary for maintaining a compact helical arrangement in caveolin-1

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Caveolin-1 (Cav1) is an integral membrane protein essential for the formation of caveolae, plasma microdomains implicated in signal transduction and mechanoprotection. Cav1 is comprised of three major alpha helices, but the topology these helices adopt remains unclear. Proline 110 is located between helix 1 and helix 2, and is hypothesized to enable Cav1 to adopt an intramembrane turn crucial for the cytosolic topology of Cav1. To assess the structural role of Proline 110, we utilized Forster resonance energy transfer (FRET) between native tryptophan (W128) and site-specifically labeled dansyl fluorophores to monitor conformational changes induced by the mutation of Proline 110 to Alanine (P110A). Static light scattering confirmed that all FRET constructs behaved monomerically, ensuring intramolecular energy transfer measurements. Our results show a significant decrease in FRET efficiency upon the P110A mutation consistent with a large conformational change. These findings support the critical role of P110 in maintaining the native topology of Cav1 and highlights the structural sensitivity of the intramembrane turn.

Article activity feed