Engineering a human-based translational activator for targeted protein expression restoration
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Therapeutic modalities to programmably increase protein production are in critical need to address diseases caused by deficient gene expression via haploinsufficiency. Restoring physiological protein levels by increasing translation of their cognate mRNA would be an advantageous approach to correct gene expression, but has not been evaluated in an in vivo disease model. Here, we investigated if a translational activator could improve phenotype in a Dravet syndrome mouse model, a severe developmental and epileptic encephalopathy caused by SCN1a haploinsufficiency, by increasing translation of the SCN1a mRNA. We identifiy and engineere human proteins capable of increasing mRNA translation using the CRISPR-Cas Inspired RNA-targeting System (CIRTS) platform to enable programmable, guide RNA (gRNA)-directed translational activation with entirely engineered human proteins. We identify a compact (601 amino acid) CIRTS translational activator (CIRTS-4GT3), that can drive targeted, sustained translation increases up to 100% from three endogenous transcripts relevant to epilepsy and neurodevelopmental disorders. AAV-delivery of CIRTS-4GT3 targeting SCN1a mRNA to a Dravet syndrome mouse model led to increased SCN1a translation and improved survivability and seizure threshold - key phenotypic indicators of Dravet syndrome. This work validates a new strategy to address SCN1a haploinsufficiency and emphasizes the preclinical potential translational activation has to address neurological haploinsufficiency.